Tipping the scale:
The Ruby features that make the difference

murphee (Werner Schuster)
Blog @ http://jroller.com/page/murphee

Ruby: first encounter

OOP

S.times{Ix| p “Hello’}

Dynamic typing

murphee's reaction...

So?

Misleading items
“Java has OOP too”
“$foo, @bar, etc? Looks like Perl!”
“I like my static typing, thank you very much...”

“Ducks typing? How do they reach the keyboard?”

What | missed the first time round
Blocks
Metaprogramming
Dynamic typing

Mixins

Ruby in 10 seconds
Matz (Yukihiro Matsumoto)
OOP
Smalltalk and Lisp

Dynamic/Interactive/Red/Succinct/Flexible

The many shapes of Ruby

#guess what this does
def three lingo hello(name)
[“Hello”, “Seas”, “HowdyHo!”].collect{|g|

“#{g} to Ruby, #{name}! \n”
}

end

three lingo hello(“murphee”)

The many shapes of Ruby

we don't like Make, we got Rake!
task :default => [:test]

task :test do
ruby "test/unittest.rb"

end

The many shapes of Ruby

we don't like Make, we got Rake!
task :default => [:test]

task :test do
ruby "test/unittest.rb"

end

Yep, that's Ruby too

The many shapes of Ruby

require 'builder'
x=Builder::XmlMarkup.new(:target => S$stdout,
:indent => 1)
X.date {
X.year "2006"
X.month "01"
X.day "01"

}

Ruby in 10 seconds

require 'builder'
x=Builder::XmlMarkup.new(:target => S$stdout,
:indent => 1)
X.date {
X.year "2006"
X.month "01"
x.day "01"

}

<date>
<year>2006>year>

<month>01>month>
<day>01l>day>
<date>

Blocks: Translation

In Lisp:

Lambda Expressions

In Smalltalk:
Blocks

Generally:

Closure

Java
~ Anonymous Classes (kind of...)

Blocks: Intro
anonymous chunk of code

looks like

{Iparaml|
param +1

J

names between symbols are input arguments

code evaluated later

Blocks: Use Case 1: lterators

words = [“foo”, “bar”, “fubar”]
words.each{|item|

p i1tem
}

Blocks: Use Case 1: lterators

words = [“foo”, “bar”, “fubar”]
words.each{|item|
p i1tem

Compare Java version:
List words = new ArrayList();
words.addAll (Arrays.asList(
new String[]{"foo", "bar", "fubar"}));
for (Iterator iter = words.iterator(); iter.hasNext();) {

String el = (String) iter.next();
System.out.println(el);

Blocks: Use Case 1: lterators

words = [“foo”, “bar”, “fubar”]
words.each{|item|

p i1tem
}

Compare Java 1.5 version:
List words = new ArrayList();
words.addAll (Arrays.asList(

new String[]{"foo", "bar", "fubar"}));
for (String el : words) {

System.out.println(el);

But...

Blocks: Use Case 2: Map

words = [“foo0”, "“bar”, *“fubar”]
uc = words.collect{|item|
item.upper

Compare Java 1.5 version:
List words = new ArrayList();
words.addAll (Arrays.asList(

new String[]{"foo", "bar", "fubar"}));
List uc = new ArrayList();

for (String el : words) {
uc.add(el.toUpperCase());

Blocks: Use Case 3: Filter/Select

words = [“foo”, “bar”, “fubar”]
1 = words.select{|item|
item.size > 3

Compare Java 1.5 version:
List words = new ArrayList();
words.addAll (Arrays.asList(

new String[]{"foo", "bar", "fubar"}));
List 1 = new ArrayList();
for (String el : words) {

if(el.length() > 3){
uc.add(el.toUpperCase());

Blocks: Use Case 4: Iterator with index

words = [“foo”, “bar”, “fubar”]
1 = words.each with index{|i,e]
p “#{1i}. #{e}”

Compare Java 1.5 version:
List words = new ArrayList();
words.addAll (Arrays.asList(

new String[]{"foo", "bar", "fubar"}));
int counter = 0;

for (String el : words) {

System.out.println(counter + “. " +el);
counter++;

Blocks: Use Case 5: Transactions

I0.open(IO0.sysopen("foo.txt"), "r") { |aFile|
do stuff with the file

}

Blocks: Use Case 5: Transactions
Transaction happens 1n block
No need to close stream/file

Keeps code clear

Blocks: Implementation

def wrap around(name, &block)
p “Pre”

block.call()

p “Post”

end

wrap around(“murphee”) {
p “Hello there, block!”

}

Blocks: Implementation

def wrap around(name, &block)
p “Pre”

block.call()

p “Post”

end

wrap around(“murphee”) {

p “Hello there, block!” Pre
} Hello there, block!

Post

Metaprogramming: Intro

Programs that program

Runtime Code generation

Specialization

Metaprogramming: Use Case 1: Proxies

class FooProxy
eg. remote 1s an XmlRpc connection

def method missing(*syms)
remote.call(syms[0].to s)

end

end

= FooOProxy.new
.helloWorld
cfluffy ()
.tryThis! ()

MNoXoX X

Metaprogramming: Use Case 2: Accessors

class Foo
attr accessors :hello, :world

Metaprogramming: More...

ActiveRecord
creates accessors based on DB schema

Aspect Oriented Programming?
no special tools needed

[Your 1deas here]

Mixins: Intro

No multiple inheritance

Mixins allow to add functionality to a class

Used to add each/collect/select/...

Mixin: Use Case 1: Make class iterable

class ToTen
include Enumerable
def each(&bl)
(1..10).each{|n|
yield n
}
end
end
X = ToTen.new
X.each {|n ..}
x.collect {|n| cos}
Xx.select {|n| ...}

Misc:
ObjectSpace.each_object

Domain Specific Languages
Rake, etc.

Continuations

1rb

JRuby

Don't go cold turkey
Ruby implementation on the JVM

Runs subset of Rails
full version end of summer(?)

Script Java objects
prototyping
powertful configuration files
end user scripting
flexibility

JRuby: EclipseShell

EclipseShell

interactive editor with shell

modelled after Smalltalk Workspaces

Future:
develop Eclipse RCP apps in Eclipse
prototype Eclipse plugins
explore Eclipse plugins

People who liked Ruby, also looked at:

Smalltalk

(home of the first refactoring tools)

Squeak

free Smalltalk written 1n Smalltalk

Croquet
immersive 3D collaboration environment,
based on Squeak
cf. Neal Stephenson's “Metaverse”

Let's wrap up

Books @ Pragmatic Programmers
http://www.pragmaticprogrammer.com/bookshelf/index.html

why's (poignant) guide to Ruby
http://poignantguide.net/ruby/
Now with 50% more foxes.

EclipseShell
http://eclipse-shell.sourceforge.net/

http://poignantguide.net/ruby/

